Mechanistic consequences of hnRNP C binding to both RNA termini of poliovirus negative-strand RNA intermediates.

نویسندگان

  • Kenneth J Ertel
  • Jo Ellen Brunner
  • Bert L Semler
چکیده

The poliovirus 3' noncoding region (3' NCR) is necessary for efficient virus replication. A poliovirus mutant, PVDelta3'NCR, with a deletion of the entire 3' NCR, yielded a virus that was capable of synthesizing viral RNA, albeit with a replication defect caused by deficient positive-strand RNA synthesis compared to wild-type virus. We detected multiple ribonucleoprotein (RNP) complexes in extracts from poliovirus-infected HeLa cells formed with a probe corresponding to the 5' end of poliovirus negative-strand RNA (the complement of the genomic 3' NCR), and the levels of these RNP complexes increased during the course of viral infection. Previous studies have identified RNP complexes formed with the 3' end of poliovirus negative-strand RNA, including one that contains a 36-kDa protein later identified as heterogeneous nuclear ribonucleoprotein C (hnRNP C). We report here that the 5' end of poliovirus negative-strand RNA is capable of interacting with endogenous hnRNP C, as well as with poliovirus nonstructural proteins. Further, we demonstrate that the addition of recombinant purified hnRNP C proteins can stimulate virus RNA synthesis in vitro and that depletion of hnRNP C proteins in cultured cells results in decreased virus yields and a correspondingly diminished accumulation of positive-strand RNAs. We propose that the association of hnRNP C with poliovirus negative-strand termini acts to stabilize or otherwise promote efficient positive-strand RNA synthesis.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Functional interaction of heterogeneous nuclear ribonucleoprotein C with poliovirus RNA synthesis initiation complexes.

We had previously demonstrated that a cellular protein specifically interacts with the 3' end of poliovirus negative-strand RNA. We now report the identity of this protein as heterogeneous nuclear ribonucleoprotein (hnRNP) C1/C2. Formation of an RNP complex with poliovirus RNA was severely impaired by substitution of a lysine, highly conserved among vertebrates, with glutamine in the RNA recogn...

متن کامل

Heterogeneous nuclear ribonucleoprotein a1 binds to the 3'-untranslated region and mediates potential 5'-3'-end cross talks of mouse hepatitis virus RNA.

The 3'-untranslated region (3'-UTR) of mouse hepatitis virus (MHV) RNA regulates the replication of and transcription from the viral RNA. Several host cell proteins have previously been shown to interact with this regulatory region. By immunoprecipitation of UV-cross-linked cellular proteins and in vitro binding of the recombinant protein, we have identified the major RNA-binding protein specie...

متن کامل

Poliovirus infection enhances the formation of two ribonucleoprotein complexes at the 3' end of viral negative-strand RNA.

To identify proteins involved in the formation of replication complexes at the 3' end of poliovirus negative-strand RNA, a combined in vitro biochemical and in vivo genetic approach was used. Five subgenomic cDNA constructs were generated to transcribe different negative-strand RNA fragments. In UV cross-linking assays, distinct differences in binding of proteins in extracts from poliovirus-inf...

متن کامل

Poliovirus-encoded 2C polypeptide specifically binds to the 3'-terminal sequences of viral negative-strand RNA.

The poliovirus-encoded, membrane-associated polypeptide 2C is believed to be required for initiation and elongation of RNA synthesis. We have expressed and purified recombinant, histidine-tagged 2C and examined its ability to bind to the first 100 nucleotides of the poliovirus 5' untranslated region of the positive strand and its complementary 3'-terminal negative-strand RNA sequences. Results ...

متن کامل

Poliovirus RNA recombination: mechanistic studies in the absence of selection.

Direct and quantitative detection of recombinant RNA molecules by polymerase chain reaction (PCR) provides a novel method for studying recombination in RNA viruses without selection for viable progeny. The parental poliovirus strains used in this study contained polymorphic marker loci approximately 600 bases apart; both exhibited wild-type growth characteristics. We established conditions unde...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Journal of virology

دوره 84 9  شماره 

صفحات  -

تاریخ انتشار 2010